If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+9w+3=0
a = 1; b = 9; c = +3;
Δ = b2-4ac
Δ = 92-4·1·3
Δ = 69
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{69}}{2*1}=\frac{-9-\sqrt{69}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{69}}{2*1}=\frac{-9+\sqrt{69}}{2} $
| -9(x+7)+70=15-10x | | -3(y+3)=15 | | y-297=-5y-9 | | 3(x-90)=30 | | -7c-3=c+229 | | g-137=-2g-5 | | -4a+6=a+96 | | 5x+20°=7x+22° | | X-4÷2=2x+1÷3 | | 2v+8v-5v=0 | | y+149=-3y+9 | | d-91=-d-5 | | -r-3=r+43 | | 16^x=4096 | | -3v+23=5(v+3) | | 10y+39=-61 | | 4(7x-5)+4=96 | | 5=-6m+23 | | 12/3-n=-2 | | 7(x+4)=9x+22 | | 2c+32=12 | | 13=4d=9 | | 3x-8+2+14=180 | | 3(7x-5)+6=54 | | 49=5p+4 | | -5n-8(1+7n)=18n= | | 7x+51=109 | | 15(n)=27 | | 2+10w=192 | | -5(0.6-4)=-2(6-0.5x) | | y3(y+)+4=2(y-1+y+y | | 8=6x+28 |